A Nullstellensatz for amoebas

نویسنده

  • Kevin Purbhoo
چکیده

The amoeba of an affine algebraic variety V ⊂ (C∗)r is the image of V under the map (z1, . . . , zr) 7→ (log |z1|, . . . , log |zr|). We give a characterisation of the amoeba based on the triangle inequality, which we call ‘testing for lopsidedness’. We show that if a point is outside the amoeba of V , there is an element of the defining ideal which witnesses this fact by being lopsided. This condition is necessary and sufficient for amoebas of arbitrary codimension, as well as for compactifications of amoebas inside any toric variety. Our approach naturally leads to methods for approximating hypersurface amoebas and their spines by systems of linear inequalities. Finally, we remark that our main result can be seen a precise analogue of a Nullstellensatz statement for tropical varieties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating amoebas and coamoebas by sums of squares

Amoebas and coamoebas are the logarithmic images of algebraic varieties and the images of algebraic varieties under the arg-map, respectively. We present new techniques for computational problems on amoebas and coamoebas, thus establishing new connections between (co-)amoebas, semialgebraic and convex algebraic geometry and semidefinite programming. Our approach is based on formulating the memb...

متن کامل

The Tropical Nullstellensatz for Congruences

Tropical algebraic geometry originally developed as the study of certain geometric objects, called amoebas, that arose as the logarithmic images of complex varieties. These amoebas possessed semi-linear skeletons in which was encoded much of the geometric content of the original complex variety. The skeletons could also be recovered as limits of logarithmic (or valuative) maps of the original c...

متن کامل

Combinatorial Nullstellensatz

The Combinatorial Nullstellensatz is a theorem about the roots of a polynomial. It is related to Hilbert’s Nullstellensatz. Established in 1996 by Alon et al. [4] and generalized in 1999 by Alon [2], the Combinatorial Nullstellensatz is a powerful tool that allows the use of polynomials to solve problems in number theory and graph theory. This article introduces the Combinatorial Nullstellensat...

متن کامل

Nullstellensatz and Skolem Properties for Integer-valued Polynomials

Skolem and Nullstellensatz properties are analogues of the weak Nullstellensatz and Hilbert’s Nullstellensatz, respectively, for the ring of integervalued polynomials in several indeterminates Int(D) = {f ∈ K[x1, . . . , xn] | f(D) ⊆ D}, where D is a domain and K its quotient field. We show their equivalence when D is a Noetherian domain and extend the criterion of Brizolis and Chabert for Int(...

متن کامل

Algorithmic Computation of Polynomial Amoebas

We present algorithms for computation and visualization of amoebas, their contours, compactified amoebas and sections of three-dimensional amoebas by two-dimensional planes. We also provide a method and an algorithm for the computation of polynomials whose amoebas exhibit the most complicated topology among all polynomials with a fixed Newton polytope. The presented algorithms are implemented i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004